syslog
12Jul/110

UK SNA 2011

Posted by Daniele Quercia

few days ago, i attended the main social networks conference/gathering in UK.

there was an interesting discussion about the future of the elsevir journal "social networks". apparently, if you want to have an easy time getting in, you need to do research on 'methodology'. frankly, IMHO, this is the best thing they could do to kill the journal. alas, the journal's table of contents already reflect this decision. that is why i have rarely found interesting articles in this journal, while first monday and AJS are full of great contributions. don't get me wrong. i love methodological contributions to social networks - tom snijders and sinan aral are doing fantastic work in this area. i just think that methodological contributions are only a tiny part of a larger picture, a picture that hosts amazing work by, eg, duncan watts, danah boyd, and michael macy (all in US). instead, UK researchers in the area of social networks seem to be anchored to pretty "traditional research". at least, that was my impression based on the talks at UK SNA, but i will be very happy to be proven wrong ;) and there are notable exceptions in UK - eg, dunbar of oxford, bernie hogan of OII, and few others…

here are few notes taken during the talks.

cecile emery studied the relationship between big five personality traits and emerge of leaders. she considered not only leaders' personalities but also followers'. she found that leaders with high conscientiousness and extraversion tend to attract followers over time, and followers high in openness and conscientiousness tend to follow more. leader-follower pairs tend to be different on agreeableness and similar on openness.

agrita kiopa of georgia tech discussed a very interesting problem - how your friendship relations impact your work output. the main idea is that, to get something, you have to ask, so friendship becomes important also at work. they run a longitudinal national study of US academic scientists in 6 disciplines between 2006 and 2010. women are overepresented - i.e., 54% men, 46% women. friends are obtained by 6 name generators: role-based (collaborator, mentor) function-based (advice, discuss important issues), and close friends naming. 1600 egonetworks are collected as a result. so, for each person, there are 6 egonetworks. there is a considerable overlap among the 6 networks on average. full professors have more friends than assistant professors (control for tenure). the main results are that friendship has no effect in advice seeking but has effect on receive introductions and get reviews of, say, your papers. i hope she will devote a bit of future work to enemy (competitor) network. also, personality might be an interesting topic to study.

bernie hogan studied the correlates to social capital on Facebook. he used a mixed-method survey methodology and downloaded Facebook ego networks. he then focused on the question of whether your social capital is related to your (objective) network structure or to the way you (subjectively) perceive your network. Very interesting work.

tore opsahl's talk revisited the idea that small-world nets are ubiquitous. by contrast, he found that "small-world networks are far from as abundant as previously thought"

6Jul/110

netsci 2011

Posted by Daniele Quercia

i attended netsci a couple of weeks ago. here is my stream of consciousness:

lada adamic talked about how info changes as it propagates through the blogsphere, and she effectively modelled this change  as a simple urn model. more on her upcoming ICSW paper.  her future research will go into how sentiment of memes changes/evolves (this topic has been recently covered by  jure leskovec).

former navy officer duncan watts presented few macro sociological lab experiments and field experiments that he and his colleagues run on social media sites. he showed how media sites such as Twitter, Facebook, and Mechanical Turk allow researchers to measure individual level behaviour and interactions on a massive scale in real time. the good news is that  there are already guides for running experiments on those platforms  (see, for example, the tutorial at icwsm by paolacci  and mason).  the experiments he mentioned are fully reported in his latest book "Everything is Obvious". The main idea behind the book could be summarised as follows:

our intuition for human behaviour is so rich: we can "explain" essentially anything we observe. in turn, we feel like we ought to be able to predict, manage, direct the behaviours of others. yet often when we try to do these things (in government, policy, business, marketing), we fail. that is because, paradoxically, our intuition for human behaviour may actually impede our understanding of it. perhaps a more scientific behaviour would help us. the book is about experiments whose goal was to understand human behaviour at a large scale.

olivia woolley meza of  max plank presented the results of a project that measured the impact of two events (ie, island vulcan ashes and 9/11) on flight fluxes. these fluxes were modelled as  a network and metrics of interest were computed on the network - for example, they computed network fragmentation (nodes remaining in the largest connected component), and network inflation (how distances in the network decay). this study provided few intuitive take-aways, including:

  • regions geographically closer to an attack are more affected
  • between-region distancing is driven by hubs

with a presentation titled "A universal model for mobility and migration patterns", filippo simini (supervised by  marta gonzalez) turned to the question of whether it is possible to predict the number of flying/public transportation commuters between two locations. law of gravitation for masses (also called gravity model) doesn't work so well with people, and that's why they proposed a  new migration model.  the main idea of this model is that  an individual looks for a better job outside his home country and, as such, accepts the job in the closest country that has benefits higher than his home country. each country has a benefit value that  is a composite measure based on income, working hours, and general employment conditions. one  take away was that population (& not distance) is the key predictor of mobility fluxes.

giovanni petti of imperial skilfully delivered a very interesting presentation about a project called freeflow whose partners include  UK unis in london, york, kent. in this project, they have collected  data from sensors placed under speed bumps that measure the number of cars that pass and the amount of time each car has spent on a bump. traffic data has been arranged in a graph and, to identify congested areas, they run a  community detection algorithm  on the graph. it turns out that london behaves like one large giant in terms of traffic flow because of  long-range spatial correlations.

tamás vicsek studied  pigeon flocks and, more generally, studied the roles according to which birds tend to fly with each other. the main finding is that each member of a bird flock takes a specific role in a hierarchy, and roles arranged also  change over time

marta gonzalez studied the mobility of people living in different of cities (including non-US ones) and found few regularities:  for example, she found that residents of well-off areas tend to travel nearby (maybe because their areas tend to have plenty of internal resources). another interesting point is that trip length  distributions at city scale are well described by a weibull distribution. Marta also tried to reconstruct temporal activity of people living in chicago using SVD (eigen-decomposition) -  temporal activity is reconstructed only using the first 21 eigenvalues (which she called eigenactivities), and such reconstruction is also predictive of people's social demographics. the main point of this modelling exercise was to show that techniques such as principal component analysis combined with k-means are great tools to detect clusters in human activity

Filed under: Conference, Social No Comments
1Jul/110

MobiSys’11. Day 3

Posted by Narseo

Tracking and Saving Energy

Today, there was only a morning session in MobiSys about location tracking and energy efficiency. The first presentation was Energy-Efficient Positioning for Smartphones using Cell-ID Sequence Matching by J. Paek (Univ. of Southern California), K. Kim (Deutsche Telekom), J. Singh (Deutsche Telekom) and R. Govindan (Univ. of Southern California). This paper is about providing energy-efficient location techniques and seems to be an extension from a previous paper presented in MobiSys'10. They try to combine the complementary features of GPS and Cell-ID. GPS is more accurate than Cell ID but it is more energy costly. During their talk they showed the inaccuracy and inconsistency of network-based location on urban environments. It presents a mean error in the order of 300m and given a location, network-based location can report different locations. Their system uses cell-ID sequence matching along with history of cells and GPS coordinates and they also use time-of-day as a hint. It opportunistically builds the history of users' routes and the transitions between cells. After that, they use the Smith-Waterman Algorithm for sequence matching between similar historic data (they look for a sub-sequence in the database that matches and they pick up the sequence that matches the best and they turn ON GPS when there's no good matching). This approach can save more than 90% of the GPS energy since GPS usage goes down as learning progresses. The only limitation of the system is that it is not able to detect small detours but the authors mention that this is not a big issue.

Energy-efficient Trajectory Tracking for Mobile Devices by M. Kjærgaard (Aarhus Univ.), S. Bhattacharya (Univ. of Helsinki), H. Blunck (Aarhus Univ.), P. Nurmi (Univ. of Helsinki). It's possible to retrieve location based on WiFi, GPS or GSM and many location-aware services often require trajectory tracking. This paper proposes new sensor management strategies and it's built on top of a previous paper published in Mobisys'09 called EnTracked. The system minimizes the use of GPS by predicting the time to sleep before next position sensing (not clear to me what happens both in terms of energy consumption and usability if the sensor returns to the cold-start phase or if it has to remain in higher power modes since they use an energy model for that) using sensors such as radio, accelerometer and compass. The system requires the collaboration of a server. They also performed a comparative analysis with previous systems also presented in MobiSys. Comparatively, this study presents the lowest energy consumption across all the systems.

Profiling Resource Usage for Mobile Applications: a Cross-layer Approach by F. Qian (Univ. of Michigan), Z. Wang (Univ. of Michigan), A. Gerber (AT&T Labs), Z. Mao (Univ. of Michigan), S. Sen (AT&T Labs), O. Spatscheck (AT&T Labs). The idea is to provide a good understanding to developers about how their apps can impact on the energy consumption on mobile handsets because of using cellular networks. They are looking at the different power states of UMTS and the time required to move between states, and how an app can make the cellular interface to move between them. Their system collects packet traces, users' input and packet-process correspondence. They associate each state with a constant power value that was measured using a power meter (no signal strength is taken into account) and this is used to perform a detailed analysis of TCP/HTTP. They try to see how bursts incur energy overheads. They performed some studies based on popular apps and web services.

Self-Constructive, High-Rate System Energy Modeling for Battery-Powered Mobile Systems by M. Dong (Rice Univ.), L. Zhong (Rice Univ.). This paper aims to build a high-rate virtual power meter without requiring external tools. It's looking at the rate of how fast the battery consumption decreases. Classic Power Models are based on linear regression techniques and they usually external multimeter to be generated, they require a good hardware knowledge to build the power model and it is also hardware dependent. Those factors limit the accuracy of the model. Sesame is a self-constructive and personalized power model that looks only at battery interfaces and it uses statistical learning (Principal Component Analysis). They measured the error reported by the low-rate battery interface (non-gaussian) in order to increase its accuracy. The computational overhead for making the measurement might be very high but it's able to generate energy models at 100Hz. It takes 15 hours to generate the models to achieve an average error of 15%. It's more accurate than Power Tutor and other tools available in the market.

... and that's all from DC!

Filed under: Uncategorized No Comments
30Jun/110

MobiSys’11. Day 2

Posted by Narseo

Keynote - Mobile Computing: the Next Decade and Beyond

The keynote was given by Prof. Mahadev Satyanarayanan, "Satya", (Carnegie Mellon University, MobiSys Outstanding Contributor Award). A quick look at the abstract of his talk, can be enough to see his merits.

He thinks that research on mobile computing is socially demanded. New systems and apps are motivated by the fact that the number of sales of mobile devices in 2011 overtook the sales of PCs for the first time. In his opinion, mobile computing is a common ground between distributed systems, wireless networking, context-awareness, energy awareness and adaptive systems. He highlighted the enduring challenges in this area in the last years:

    - Weight, power, size constraints (e.g. tiny I/O devices).
    - Communication uncertainty: bandwidth, latency and money. We still struggle with intermittent connectivity.
    - Finite energy. Computing, sensing and transmitting data cost energy.
    - Scarce user attention: low human performance. Users are prone to make errors and they are becoming less patient.
    - Lower privacy, security and robustness. Mobile handsets have more attack vectors and can suffer physical damage more easily.

After that, he mentioned three future emerging themes, some of them related to several ongoing projects in Cambridge:

    Mobile devices are rich sensors. They support a wide range of rich sensors and they access nearby data opportunistically (content-based search can be more energy-efficient, so looks like there's some ground for CCN here). In fact, applications can be context and energy-aware. He mentioned some of the applications from yesterday's first session as examples.
    Cloud-mobile convergence. Mobile computing allows freedom. It enables access to anything, anytime, anywehere. However, this increases complexity. On the other hand, Cloud computing provides simplicity by centralization (one source has it all). The question is: can we combine the freedom of mobility with the simplicity of cloud computing? Cloud computing evolved a lot since its first conception in 1986 (he mentioned Andrew File System as the first cloud service ever). He also highlighted that the key technology/enabler is virtualization and an example is his research about Cloudlets. Virtual Machines allow ubiquity of state and behavior so they can perfectly re-create the state anywhere, anytime. Moreover, moving clouds closer to the end-user can minimise the impact of network latency. He also talked about an still quite unexplored space: the importance of offloading computation from the cloud to local devices (the other way has been quite well explored already).
    Resource-rich mobile apps. From my perspective, this is very related to the first example. He talked about applications incorporating face recognition or the role of mobile handsets to enable applications for mobile cognitive assistance.

Session 4. When and Where

This session was more about indoors localisation. The first presentation was: Indoor location sensing using geo-magnetism (J. Chung (MIT), M. Donahoe (MIT), I. Kim (MIT), C. Schmandt (MIT), P. Razavi (MIT), M. Wiseman (MIT)). In this paper, the authors try to provide an interesting approach to the classic problem of indoors location. In their project, they use magnetic field distortion fingerprints to identify the location of the user. They used their own gadget: a rotating tower with a magnetic sensor to obtain the magnetic fingerprint on a building (sampled every 2 feet). They proved that the magnetic field on their building hasn't changed in 6 months (they haven't checked whether there are changes at different times of the day or not) so the fingerprint doesn't have to be updated frequently. They implemented their own portable gadget with 4 magnetic sensors for the evaluation. The error is <1m in 65% of the cases so it's more precise (but more costly) than WiFi solutions. The main source of errors are moving objects (e.g. elevator).

The next paper is similar but in this case it leverages audio fingerprints: Indoor Localization without Infrastructure using the Acoustic Background Spectrum(S. Tarzia (Northwestern Univ.), P. Dinda (Northwestern Univ.), R. Dick (Univ. of Michigan), G. Memik (Northwestern Univ.)) -NOTE: This app is available in Apple's app store: BatPhone. The benefit of this system is that this does not require specialized hardware and it passively listens to background sounds and after it analyses the spectrum. It doesn't require any infrastructure support. They achieved a 69% accuracy for 33 rooms using sound alone. As many other fingerprint-based localization mechanism, it requires supervised learning techniques. To guess the current location, they find the "closest" fingerprint in a database of labeled fingerprints. In the future work list, they plan to use a Markov movement model to improve the accuracy and also they plan to add other sensors to increase accuracy as in SurroundSense.

Exploiting FM Radio Data System for Adaptive Clock Calibration in Sensor Networks was a quite impressive and neat piece of work. Time synchronization is important for various applications (event ordering, coordination, and there are new wireless interfaces such as Qualcomm's Flashlink that take advantage of a central clock to synchronise devices). In fact, time synchronization is usually based on message passing between devices. They exploit FM radio data system (RDS) for clock calibration. Some of its advantages are its excellent coverage and it's availability all over the world. They implemented their own FM hardware receiver, that was integrated with sensor network platforms on TinyOS. It also solves some of the coverage limitations of GSM networks. Their results show that RDS clock is highly stable and city-wide available and the power consumption is very low (so the cost, 2-3$). The calibration error is also ridiculously low even if the length of the calibration period is in the order of hours. Very neat.

The last presentation was a joint work between Univeristy of Michigan and AT&T Labs: AccuLoc: Practical Localization of Performance Measurements in 3G Networks. Cellular operators need to distinguish the performance of each geographic area in their 3G networks to detect and resolve local network problems. They claim that the “last mile” radio link between 3G base stations and end-user devices is essential for the user experiences. They take advantage of some previous papers that demonstrate that users' mobility is predictable and they exploit this fact to cluster cell sectors that accurately report network performance at the IP level. Those techniques allow them to characterize and identify problems in network performance: clustering cells allows capturing RTT spikes better.

Session 5. Security and Privacy

Caché: Caching Location-Enhanced Content to Improve User Privacy
S. Amini (CMU), J. Lindqvist (CMU), J. Hong (CMU), J. Lin (CMU), E. Toch (Tel Aviv Univ.), N. Sadeh (CMU). The idea is to periodically pre-fetch potentially useful location content so applications can retrieve content from a local cache on the mobile device when it is needed. Location content will be only revealed to third-party providers like "a region" instead of a precise location. Somehow similar to SpotMe.

The second presentation was ProxiMate: Proximity-based Secure Pairing using Ambient Wireless Signals by S. Mathur (AT&T Labs), R. Miller (Rutgers Univ.), A. Varshavsky (AT&T Labs), W. Trappe (Rutgers Univ.), N. Mandayam (Rutgers Univ.). This is about enabling security between devices in wireless environments that do not have a trusted relationship between them based on proximity. It tries to reduce the security issues of low power communications (susceptible to eavesdropping, or even to be sniffed from a mile away as Bluetooth). This takes advantage of code-offsets to generate a common cryptographic key directly from their shared time wireless environment. Quite complex to understand in the presentation. It provides security against computationally unbounded adversary. Complexity is O(n) while Diffie-Hellman is O(n^3).

Security versus Energy Tradeoffs in Host-Based Mobile Malware Detection
J. Bickford (Rutgers Univ.), H. Lagar-Cavilla (AT&T Labs), A. Varshavsky (AT&T Labs), V. Ganapathy (Rutgers Univ), L. Iftode (Rutgers Univ.). This interesting paper explores the security-energy tradeoffs in mobile malware detection. It requires periodically scanning the attack target but it can decrease the battery life two times faster. This work is a energy-optimized version of two security tools. The way it conserves energy is by adapting the frequency of checks and by defining what to check (scan fewer code/data objects). They are trying to provide a high-level security with a low power consumption. They are specially looking a rootkits (sophisticated malware requiring complex detection algorithms). In order to be detected, it's necessary to run the user OS on a hypervisor to check all the kernel data changes. This technique can provide a 100% security but a poor energy efficiency. In order to find the tradeoff, they target what they call the sweet-spot to generate a balanced security. With this technique they can detect 96% of the rootkit attacks.

Analyzing Inter-Application Communication in Android by E. Chin (UC Berkeley), A. Felt (UC Berkeley), K. Greenwood (UC Berkeley), D. Wagner (UC Berkeley). Malicious Apps can take advantage of Android's resources by registering a listener to an specific provider (This abstraction is called Intent in Android). An application can register implicit intents so they not for an specific receiver (i.e. application or service). They described several attacks that can be possible because sending implicit intents in android makes communication public: both the intent and the public receiver can be public for an attacker. Consequently, there are several attacks such as spoofing, man-in-the-middle, etc. A malicious app can also inject fake data to applications or collect information about the system. They evaluated the system called ComDroid with 20 applications. They claim that this can be fixed by either developers or by the platform.

Session 6. Wireless Protocols

This session tries to cover some optimisations for wireless protocols. The first presentation was Avoiding the Rush Hours: WiFi Energy Management via Traffic Isolation by J. Manweiler (Duke Univ.), R. Choudhury (Duke Univ.). This paper measured the power consumption of WiFi interfaces on Nexus One handsets and they found that the WiFi energy cost grows linearly with the number of access points available (dense neighborhoods). This system tries to force APs to collaborate and to coordinate their beacons. This approach only requires changing the APs firmware. Mobile clients can reduce the energy wasted in idle/overhear mode. This system (called SleepWell) forces APs to maintain a map of their neighboring peers (APs) to re-schedule efficiently their beacon timings. However, clients are synchronized to AP clocks. To solve this issue, the AP notifies the client that a beacon is going to be deferred so the client knows when it must wake up. As a result, the client can extend the period of time that it remains in deep sleep mode.

The next paper was Opportunistic Alignment of Advertisement Delivery with Cellular Basestation Overloads, by R. Kokku (NEC Labs), R. Mahindra (NEC Labs), S. Rangarajan (NEC Labs) and H. Zhang (NEC Labs). This paper tries to align cellular base-stations overload with the delivery of advertising content to the clients. The goal is to do not compromise the user-perceived quality of experience while making cellular network operations profitable with advertisements (e.g. embedded in videos). The overload can lead to reduce the available bandwidth per user. Their assumption is that cellular operators can control advertisement delivery, so it's possible to adapt the quality (lower rate) of some advertisements to an specific set of users. Their system called Opal considers two groups of users: regular users that receive their traffic share, and targeted users that receive advertisements during base station overloads. Opal initially maps all users to the regular group and it dynamically decides which users will be migrated between groups based on a long term fairness metric. The system is evaluated on WiMax and with simulations. In the future they're trying to target location-based advertising.

The final presentation was Revisiting Partial Packet Recovery in 802.11 Wireless LANs by J. Xie (Florida State Univ.), W. Hu (Florida State Univ.), Z. Zhang (Florida State Univ.). Packets in WiFi links can be partially received. In order to be recovered, all the packet has to be retransmitted so it has an energy and computational overhead. One solution is based on dividing the packets in smaller blocks so only the missed ones are retransmitted (like keeping a TCP window). Other technique is based on error-correction (e.g. ZipTx). Those techniques can have an important overhead on the CPU and they can be complementary. The novelty of their approach is including Target Error Correction and dynamically selecting the optimal repair method that minimizes the number of bytes sent and the CPU overhead.

.... and now the conference banquet :-)

30Jun/110

SpotME: promoting location privacy, one lie at a time

Posted by Daniele Quercia

Last week at ICDS and today at Eurecom, I presented our work on location privacy. Here is the basic idea -

By sharing their location on mobile social-networking services, mobile phone users benefit from a variety of  new services working on *aggregate* location data such as receiving  road traffic estimations and finding the best nightlife "hotspots" in a city. However, location sharing has caused outcries over privacy issues - you cannot really trust private companies with your private location data ;)  That's why we have recently proposed a  a piece of software for privacy-conscious individuals and called it SpotME (here is the paper). This software  can run directly on a mobile phone and reports, in addition to  actual locations, a very large number of erroneous  (fake) locations.  Fake locations:  are carefully chosen by a so-called randomised algorithm,  guarantee that individuals cannot be localized with high probability, yet they have little effect on services offered to car drivers in  Zurich and to subway passengers in London. For technical details, please have a go at the paper ;)

Filed under: Uncategorized No Comments